There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{4}tan(({x}^{3})({e}^{x})){e}^{(({x}^{2}){(sec({x}^{5}))}^{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4}{e}^{(x^{2}sec^{3}(x^{5}))}tan(x^{3}{e}^{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4}{e}^{(x^{2}sec^{3}(x^{5}))}tan(x^{3}{e}^{x})\right)}{dx}\\=&4x^{3}{e}^{(x^{2}sec^{3}(x^{5}))}tan(x^{3}{e}^{x}) + x^{4}({e}^{(x^{2}sec^{3}(x^{5}))}((2xsec^{3}(x^{5}) + x^{2}*3sec^{3}(x^{5})tan(x^{5})*5x^{4})ln(e) + \frac{(x^{2}sec^{3}(x^{5}))(0)}{(e)}))tan(x^{3}{e}^{x}) + x^{4}{e}^{(x^{2}sec^{3}(x^{5}))}sec^{2}(x^{3}{e}^{x})(3x^{2}{e}^{x} + x^{3}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))\\=&2x^{5}{e}^{(x^{2}sec^{3}(x^{5}))}tan(x^{3}{e}^{x})sec^{3}(x^{5}) + 15x^{10}{e}^{(x^{2}sec^{3}(x^{5}))}tan(x^{5})tan(x^{3}{e}^{x})sec^{3}(x^{5}) + 4x^{3}{e}^{(x^{2}sec^{3}(x^{5}))}tan(x^{3}{e}^{x}) + 3x^{6}{e}^{(x^{2}sec^{3}(x^{5}))}{e}^{x}sec^{2}(x^{3}{e}^{x}) + x^{7}{e}^{x}{e}^{(x^{2}sec^{3}(x^{5}))}sec^{2}(x^{3}{e}^{x})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !