There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{x}{(2 - tan(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(-tan(x) + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(-tan(x) + 2)}\right)}{dx}\\=&(\frac{-(-sec^{2}(x)(1) + 0)}{(-tan(x) + 2)^{2}})x + \frac{1}{(-tan(x) + 2)}\\=&\frac{xsec^{2}(x)}{(-tan(x) + 2)^{2}} + \frac{1}{(-tan(x) + 2)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{xsec^{2}(x)}{(-tan(x) + 2)^{2}} + \frac{1}{(-tan(x) + 2)}\right)}{dx}\\=&(\frac{-2(-sec^{2}(x)(1) + 0)}{(-tan(x) + 2)^{3}})xsec^{2}(x) + \frac{sec^{2}(x)}{(-tan(x) + 2)^{2}} + \frac{x*2sec^{2}(x)tan(x)}{(-tan(x) + 2)^{2}} + (\frac{-(-sec^{2}(x)(1) + 0)}{(-tan(x) + 2)^{2}})\\=&\frac{2xsec^{4}(x)}{(-tan(x) + 2)^{3}} + \frac{2sec^{2}(x)}{(-tan(x) + 2)^{2}} + \frac{2xtan(x)sec^{2}(x)}{(-tan(x) + 2)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !