Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}(\frac{2}{5}x + 1)(\frac{1}{5}s + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2}{25}sx^{3} + \frac{2}{5}x^{3} + \frac{1}{5}sx^{2} + x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2}{25}sx^{3} + \frac{2}{5}x^{3} + \frac{1}{5}sx^{2} + x^{2}\right)}{dx}\\=&\frac{2}{25}s*3x^{2} + \frac{2}{5}*3x^{2} + \frac{1}{5}s*2x + 2x\\=&\frac{6sx^{2}}{25} + \frac{6x^{2}}{5} + \frac{2sx}{5} + 2x\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return