There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(x - 1)}^{2}(3{x}^{2} - 16x + 21)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3x^{4} - 22x^{3} + 56x^{2} - 58x + 21\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3x^{4} - 22x^{3} + 56x^{2} - 58x + 21\right)}{dx}\\=&3*4x^{3} - 22*3x^{2} + 56*2x - 58 + 0\\=&12x^{3} - 66x^{2} + 112x - 58\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12x^{3} - 66x^{2} + 112x - 58\right)}{dx}\\=&12*3x^{2} - 66*2x + 112 + 0\\=&36x^{2} - 132x + 112\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !