There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(x){\frac{1}{x}}^{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {\frac{1}{x}}^{n}sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {\frac{1}{x}}^{n}sin(x)\right)}{dx}\\=&({\frac{1}{x}}^{n}((0)ln(\frac{1}{x}) + \frac{(n)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))sin(x) + {\frac{1}{x}}^{n}cos(x)\\=&\frac{-n{\frac{1}{x}}^{n}sin(x)}{x} + {\frac{1}{x}}^{n}cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !