There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(14x - 19)}^{\frac{1}{2}} + x - 3\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (14x - 19)^{\frac{1}{2}} + x - 3\right)}{dx}\\=&((14x - 19)^{\frac{1}{2}}((0)ln(14x - 19) + \frac{(\frac{1}{2})(14 + 0)}{(14x - 19)})) + 1 + 0\\=&\frac{7(14x - 19)^{\frac{1}{2}}}{(14x - 19)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !