There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{2p}{Rt})}{(1 + {(1 + \frac{4pB}{Rt})}^{\frac{1}{2}})}\ with\ respect\ to\ p:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2p}{((\frac{4Bp}{Rt} + 1)^{\frac{1}{2}} + 1)Rt}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2p}{((\frac{4Bp}{Rt} + 1)^{\frac{1}{2}} + 1)Rt}\right)}{dp}\\=&\frac{2(\frac{-((\frac{\frac{1}{2}(\frac{4B}{Rt} + 0)}{(\frac{4Bp}{Rt} + 1)^{\frac{1}{2}}}) + 0)}{((\frac{4Bp}{Rt} + 1)^{\frac{1}{2}} + 1)^{2}})p}{Rt} + \frac{2}{((\frac{4Bp}{Rt} + 1)^{\frac{1}{2}} + 1)Rt}\\=&\frac{-4Bp}{(\frac{4Bp}{Rt} + 1)^{\frac{1}{2}}((\frac{4Bp}{Rt} + 1)^{\frac{1}{2}} + 1)^{2}R^{2}t^{2}} + \frac{2}{((\frac{4Bp}{Rt} + 1)^{\frac{1}{2}} + 1)Rt}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !