There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{2p}{Rx})}{(1 + {(1 + \frac{4pB}{Rx})}^{\frac{1}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2p}{((\frac{4pB}{Rx} + 1)^{\frac{1}{2}} + 1)Rx}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2p}{((\frac{4pB}{Rx} + 1)^{\frac{1}{2}} + 1)Rx}\right)}{dx}\\=&\frac{2(\frac{-((\frac{\frac{1}{2}(\frac{4pB*-1}{Rx^{2}} + 0)}{(\frac{4pB}{Rx} + 1)^{\frac{1}{2}}}) + 0)}{((\frac{4pB}{Rx} + 1)^{\frac{1}{2}} + 1)^{2}})p}{Rx} + \frac{2p*-1}{((\frac{4pB}{Rx} + 1)^{\frac{1}{2}} + 1)Rx^{2}}\\=&\frac{4p^{2}B}{((\frac{4pB}{Rx} + 1)^{\frac{1}{2}} + 1)^{2}(\frac{4pB}{Rx} + 1)^{\frac{1}{2}}R^{2}x^{3}} - \frac{2p}{((\frac{4pB}{Rx} + 1)^{\frac{1}{2}} + 1)Rx^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !