There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{2pre^{s}s}{Rx})}{(1 + sqrt(1 + \frac{4pre^{s}sB}{Rx}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2prse^{s}}{(sqrt(\frac{4prsBe^{s}}{Rx} + 1) + 1)Rx}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2prse^{s}}{(sqrt(\frac{4prsBe^{s}}{Rx} + 1) + 1)Rx}\right)}{dx}\\=&\frac{2(\frac{-(\frac{(\frac{4prsB*-e^{s}}{Rx^{2}} + \frac{4prsBe^{s}*0}{Rx} + 0)*\frac{1}{2}}{(\frac{4prsBe^{s}}{Rx} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(\frac{4prsBe^{s}}{Rx} + 1) + 1)^{2}})prse^{s}}{Rx} + \frac{2prs*-e^{s}}{(sqrt(\frac{4prsBe^{s}}{Rx} + 1) + 1)Rx^{2}} + \frac{2prse^{s}*0}{(sqrt(\frac{4prsBe^{s}}{Rx} + 1) + 1)Rx}\\=&\frac{4p^{2}r^{2}s^{2}Be^{{s}*{2}}}{(sqrt(\frac{4prsBe^{s}}{Rx} + 1) + 1)^{2}(\frac{4prsBe^{s}}{Rx} + 1)^{\frac{1}{2}}R^{2}x^{3}} - \frac{2prse^{s}}{(sqrt(\frac{4prsBe^{s}}{Rx} + 1) + 1)Rx^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !