There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{xsin(x)}{(x + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xsin(x)}{(x + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xsin(x)}{(x + 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 1)^{2}})xsin(x) + \frac{sin(x)}{(x + 1)} + \frac{xcos(x)}{(x + 1)}\\=&\frac{-xsin(x)}{(x + 1)^{2}} + \frac{sin(x)}{(x + 1)} + \frac{xcos(x)}{(x + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-xsin(x)}{(x + 1)^{2}} + \frac{sin(x)}{(x + 1)} + \frac{xcos(x)}{(x + 1)}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x + 1)^{3}})xsin(x) - \frac{sin(x)}{(x + 1)^{2}} - \frac{xcos(x)}{(x + 1)^{2}} + (\frac{-(1 + 0)}{(x + 1)^{2}})sin(x) + \frac{cos(x)}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}})xcos(x) + \frac{cos(x)}{(x + 1)} + \frac{x*-sin(x)}{(x + 1)}\\=&\frac{2xsin(x)}{(x + 1)^{3}} - \frac{2sin(x)}{(x + 1)^{2}} - \frac{2xcos(x)}{(x + 1)^{2}} + \frac{2cos(x)}{(x + 1)} - \frac{xsin(x)}{(x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !