There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{{3}^{3}}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{27}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{27}{x}\right)}{dx}\\=&\frac{27*-1}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-27}{x^{2}}\right)}{dx}\\=&\frac{-27*-2}{x^{3}}\\=&\frac{54}{x^{3}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{54}{x^{3}}\right)}{dx}\\=&\frac{54*-3}{x^{4}}\\=&\frac{-162}{x^{4}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-162}{x^{4}}\right)}{dx}\\=&\frac{-162*-4}{x^{5}}\\=&\frac{648}{x^{5}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !