Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {{e}^{x}}^{(\frac{7}{6})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{e}^{x}}^{\frac{7}{6}}\right)}{dx}\\=&({{e}^{x}}^{\frac{7}{6}}((0)ln({e}^{x}) + \frac{(\frac{7}{6})(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{({e}^{x})}))\\=&\frac{7{e}^{(\frac{7}{6}x)}}{6}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{7{e}^{(\frac{7}{6}x)}}{6}\right)}{dx}\\=&\frac{7({e}^{(\frac{7}{6}x)}((\frac{7}{6})ln(e) + \frac{(\frac{7}{6}x)(0)}{(e)}))}{6}\\=&\frac{49{e}^{(\frac{7}{6}x)}}{36}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return