Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ y{e}^{(x + 2y)} + yx{e}^{(x + 2y)}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = y{e}^{(x + 2y)} + xy{e}^{(x + 2y)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( y{e}^{(x + 2y)} + xy{e}^{(x + 2y)}\right)}{dy}\\=&{e}^{(x + 2y)} + y({e}^{(x + 2y)}((0 + 2)ln(e) + \frac{(x + 2y)(0)}{(e)})) + x{e}^{(x + 2y)} + xy({e}^{(x + 2y)}((0 + 2)ln(e) + \frac{(x + 2y)(0)}{(e)}))\\=&{e}^{(x + 2y)} + 2y{e}^{(x + 2y)} + x{e}^{(x + 2y)} + 2xy{e}^{(x + 2y)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return