There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e^{x}}^{(\frac{7}{6})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e^{x}}^{\frac{7}{6}}\right)}{dx}\\=&({e^{x}}^{\frac{7}{6}}((0)ln(e^{x}) + \frac{(\frac{7}{6})(e^{x})}{(e^{x})}))\\=&\frac{7e^{{x}*{\frac{7}{6}}}}{6}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{7e^{{x}*{\frac{7}{6}}}}{6}\right)}{dx}\\=&\frac{7*\frac{7}{6}e^{{x}*{\frac{1}{6}}}e^{x}}{6}\\=&\frac{49e^{{x}*{\frac{7}{6}}}}{36}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !