Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2kn{p}^{n}{b}^{n} - kn{p}^{n} + k + kn + 1 + b - {b}^{(n + 1)}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2kn{p}^{n}{b}^{n} - kn{p}^{n} + kn + k + b - {b}^{(n + 1)} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2kn{p}^{n}{b}^{n} - kn{p}^{n} + kn + k + b - {b}^{(n + 1)} + 1\right)}{dn}\\=&2k{p}^{n}{b}^{n} + 2kn({p}^{n}((1)ln(p) + \frac{(n)(0)}{(p)})){b}^{n} + 2kn{p}^{n}({b}^{n}((1)ln(b) + \frac{(n)(0)}{(b)})) - k{p}^{n} - kn({p}^{n}((1)ln(p) + \frac{(n)(0)}{(p)})) + k + 0 + 0 - ({b}^{(n + 1)}((1 + 0)ln(b) + \frac{(n + 1)(0)}{(b)})) + 0\\=&2k{p}^{n}{b}^{n} + 2kn{p}^{n}{b}^{n}ln(p) + 2kn{b}^{n}{p}^{n}ln(b) - k{p}^{n} - kn{p}^{n}ln(p) + k - {b}^{(n + 1)}ln(b)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return