Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of k is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{(\frac{Q}{k})}^{2}{({a}^{2} - \frac{2Qx}{k})}^{\frac{-3}{2}}\ with\ respect\ to\ k:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-Q^{2}}{(a^{2} - \frac{2Qx}{k})^{\frac{3}{2}}k^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-Q^{2}}{(a^{2} - \frac{2Qx}{k})^{\frac{3}{2}}k^{2}}\right)}{dk}\\=&\frac{-(\frac{\frac{-3}{2}(0 - \frac{2Qx*-1}{k^{2}})}{(a^{2} - \frac{2Qx}{k})^{\frac{5}{2}}})Q^{2}}{k^{2}} - \frac{Q^{2}*-2}{(a^{2} - \frac{2Qx}{k})^{\frac{3}{2}}k^{3}}\\=&\frac{3Q^{3}x}{(a^{2} - \frac{2Qx}{k})^{\frac{5}{2}}k^{4}} + \frac{2Q^{2}}{(a^{2} - \frac{2Qx}{k})^{\frac{3}{2}}k^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return