There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{x}{(2 - x)})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{\frac{1}{2}}}{(-x + 2)^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{\frac{1}{2}}}{(-x + 2)^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-1 + 0)}{(-x + 2)^{\frac{3}{2}}})x^{\frac{1}{2}} + \frac{\frac{1}{2}}{(-x + 2)^{\frac{1}{2}}x^{\frac{1}{2}}}\\=&\frac{x^{\frac{1}{2}}}{2(-x + 2)^{\frac{3}{2}}} + \frac{1}{2(-x + 2)^{\frac{1}{2}}x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !