There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(3)cos(x) - 1 - (1 - \frac{2}{sqrt(3)})sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos(x)sqrt(3) + \frac{2sin(x)}{sqrt(3)} - sin(x) - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos(x)sqrt(3) + \frac{2sin(x)}{sqrt(3)} - sin(x) - 1\right)}{dx}\\=&-sin(x)sqrt(3) + cos(x)*0*\frac{1}{2}*3^{\frac{1}{2}} + \frac{2cos(x)}{sqrt(3)} + \frac{2sin(x)*-0*\frac{1}{2}*3^{\frac{1}{2}}}{(3)} - cos(x) + 0\\=&-sin(x)sqrt(3) + \frac{2cos(x)}{sqrt(3)} - cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !