There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-2{sqrt(ln(\frac{(x - 2)}{(x + 2)}))}^{3}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-2}{3}sqrt(ln(\frac{x}{(x + 2)} - \frac{2}{(x + 2)}))^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-2}{3}sqrt(ln(\frac{x}{(x + 2)} - \frac{2}{(x + 2)}))^{3}\right)}{dx}\\=&\frac{\frac{-2}{3}*3(ln(\frac{x}{(x + 2)} - \frac{2}{(x + 2)}))((\frac{-(1 + 0)}{(x + 2)^{2}})x + \frac{1}{(x + 2)} - 2(\frac{-(1 + 0)}{(x + 2)^{2}}))*\frac{1}{2}}{(\frac{x}{(x + 2)} - \frac{2}{(x + 2)})(ln(\frac{x}{(x + 2)} - \frac{2}{(x + 2)}))^{\frac{1}{2}}}\\=&\frac{xln^{\frac{1}{2}}(\frac{x}{(x + 2)} - \frac{2}{(x + 2)})}{(x + 2)^{2}(\frac{x}{(x + 2)} - \frac{2}{(x + 2)})} - \frac{ln^{\frac{1}{2}}(\frac{x}{(x + 2)} - \frac{2}{(x + 2)})}{(\frac{x}{(x + 2)} - \frac{2}{(x + 2)})(x + 2)} - \frac{2ln^{\frac{1}{2}}(\frac{x}{(x + 2)} - \frac{2}{(x + 2)})}{(x + 2)^{2}(\frac{x}{(x + 2)} - \frac{2}{(x + 2)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !