There are 1 questions in this calculation: for each question, the 1 derivative of T is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2P}{RT(1 + sqrt(1 + \frac{4PB}{TR}))}\ with\ respect\ to\ T:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2P}{(sqrt(\frac{4PB}{RT} + 1) + 1)RT}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2P}{(sqrt(\frac{4PB}{RT} + 1) + 1)RT}\right)}{dT}\\=&\frac{2(\frac{-(\frac{(\frac{4PB*-1}{RT^{2}} + 0)*\frac{1}{2}}{(\frac{4PB}{RT} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(\frac{4PB}{RT} + 1) + 1)^{2}})P}{RT} + \frac{2P*-1}{(sqrt(\frac{4PB}{RT} + 1) + 1)RT^{2}}\\=&\frac{4P^{2}B}{(sqrt(\frac{4PB}{RT} + 1) + 1)^{2}(\frac{4PB}{RT} + 1)^{\frac{1}{2}}R^{2}T^{3}} - \frac{2P}{(sqrt(\frac{4PB}{RT} + 1) + 1)RT^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !