Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2x}{RT(1 + sqrt(1 + \frac{4xB}{TR}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x}{(sqrt(\frac{4Bx}{RT} + 1) + 1)RT}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x}{(sqrt(\frac{4Bx}{RT} + 1) + 1)RT}\right)}{dx}\\=&\frac{2(\frac{-(\frac{(\frac{4B}{RT} + 0)*\frac{1}{2}}{(\frac{4Bx}{RT} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(\frac{4Bx}{RT} + 1) + 1)^{2}})x}{RT} + \frac{2}{(sqrt(\frac{4Bx}{RT} + 1) + 1)RT}\\=&\frac{-4Bx}{(sqrt(\frac{4Bx}{RT} + 1) + 1)^{2}(\frac{4Bx}{RT} + 1)^{\frac{1}{2}}R^{2}T^{2}} + \frac{2}{(sqrt(\frac{4Bx}{RT} + 1) + 1)RT}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return