There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (0.2x + 0.18)sqrt(0.25{x}^{2} - 0.18x + 0.09)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.2xsqrt(0.25x - 0.18x + 0.09) + 0.18sqrt(0.25x - 0.18x + 0.09)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.2xsqrt(0.25x - 0.18x + 0.09) + 0.18sqrt(0.25x - 0.18x + 0.09)\right)}{dx}\\=&0.2sqrt(0.25x - 0.18x + 0.09) + \frac{0.2x(0.25 - 0.18 + 0)*0.5}{(0.25x - 0.18x + 0.09)^{\frac{1}{2}}} + \frac{0.18(0.25 - 0.18 + 0)*0.5}{(0.25x - 0.18x + 0.09)^{\frac{1}{2}}}\\=&0.2sqrt(0.25x - 0.18x + 0.09) + \frac{0.025x}{(0.25x - 0.18x + 0.09)^{\frac{1}{2}}} - \frac{0.018x}{(0.25x - 0.18x + 0.09)^{\frac{1}{2}}} + \frac{0.0225}{(0.25x - 0.18x + 0.09)^{\frac{1}{2}}} - \frac{0.0162}{(0.25x - 0.18x + 0.09)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !