There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (-0.0005{x}^{2} + 0.9543x - 212.52)(0.0022{x}^{2} - 1.2336x + 176.62)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -0.0000011x^{4} + 0.0006168x^{3} + 0.00209946x^{3} - 0.08831x^{2} - 1.17722448x^{2} + 168.548466x - 0.467544x^{2} + 262.164672x - 37535.2824\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -0.0000011x^{4} + 0.0006168x^{3} + 0.00209946x^{3} - 0.08831x^{2} - 1.17722448x^{2} + 168.548466x - 0.467544x^{2} + 262.164672x - 37535.2824\right)}{dx}\\=&-0.0000011*4x^{3} + 0.0006168*3x^{2} + 0.00209946*3x^{2} - 0.08831*2x - 1.17722448*2x + 168.548466 - 0.467544*2x + 262.164672 + 0\\=&-0.0000044x^{3} + 0.0018504x^{2} + 0.00629838x^{2} - 0.17662x - 2.35444896x - 0.935088x + 430.713138\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !