Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (0.0023{x}^{2} - 1.2694x + 176.92)(0.0009{x}^{2} - 0.3654x + 39.068)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.00000207x^{4} - 0.00084042x^{3} - 0.00114246x^{3} + 0.0898564x^{2} + 0.46383876x^{2} - 49.5929192x + 0.159228x^{2} - 64.646568x + 6911.91056\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.00000207x^{4} - 0.00084042x^{3} - 0.00114246x^{3} + 0.0898564x^{2} + 0.46383876x^{2} - 49.5929192x + 0.159228x^{2} - 64.646568x + 6911.91056\right)}{dx}\\=&0.00000207*4x^{3} - 0.00084042*3x^{2} - 0.00114246*3x^{2} + 0.0898564*2x + 0.46383876*2x - 49.5929192 + 0.159228*2x - 64.646568 + 0\\=&0.00000828x^{3} - 0.00252126x^{2} - 0.00342738x^{2} + 0.1797128x + 0.92767752x + 0.318456x - 114.2394872\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return