There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (0.0019{x}^{2} - 1.1351x + 170.67)(0.0005{x}^{2} - 0.1903x + 20.97)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.00000095x^{4} - 0.00036157x^{3} - 0.00056755x^{3} + 0.039843x^{2} + 0.21600953x^{2} - 23.803047x + 0.085335x^{2} - 32.478501x + 3578.9499\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.00000095x^{4} - 0.00036157x^{3} - 0.00056755x^{3} + 0.039843x^{2} + 0.21600953x^{2} - 23.803047x + 0.085335x^{2} - 32.478501x + 3578.9499\right)}{dx}\\=&0.00000095*4x^{3} - 0.00036157*3x^{2} - 0.00056755*3x^{2} + 0.039843*2x + 0.21600953*2x - 23.803047 + 0.085335*2x - 32.478501 + 0\\=&0.0000038x^{3} - 0.00108471x^{2} - 0.00170265x^{2} + 0.079686x + 0.43201906x + 0.17067x - 56.281548\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !