There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (0.0036{x}^{2} - 2.1462x + 324.16)(0.0006{x}^{2} - 0.2761x + 32.402)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.00000216x^{4} - 0.00099396x^{3} - 0.00128772x^{3} + 0.1166472x^{2} + 0.59256582x^{2} - 69.5411724x + 0.194496x^{2} - 89.500576x + 10503.43232\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.00000216x^{4} - 0.00099396x^{3} - 0.00128772x^{3} + 0.1166472x^{2} + 0.59256582x^{2} - 69.5411724x + 0.194496x^{2} - 89.500576x + 10503.43232\right)}{dx}\\=&0.00000216*4x^{3} - 0.00099396*3x^{2} - 0.00128772*3x^{2} + 0.1166472*2x + 0.59256582*2x - 69.5411724 + 0.194496*2x - 89.500576 + 0\\=&0.00000864x^{3} - 0.00298188x^{2} - 0.00386316x^{2} + 0.2332944x + 1.18513164x + 0.388992x - 159.0417484\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !