There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (0.0037{x}^{2} - 2.263x + 346.31)(0.00005{x}^{2} + 0.218x - 53.43)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.000000185x^{4} + 0.0008066x^{3} - 0.00011315x^{3} - 0.197691x^{2} - 0.493334x^{2} + 120.91209x + 0.0173155x^{2} + 75.49558x - 18503.3433\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.000000185x^{4} + 0.0008066x^{3} - 0.00011315x^{3} - 0.197691x^{2} - 0.493334x^{2} + 120.91209x + 0.0173155x^{2} + 75.49558x - 18503.3433\right)}{dx}\\=&0.000000185*4x^{3} + 0.0008066*3x^{2} - 0.00011315*3x^{2} - 0.197691*2x - 0.493334*2x + 120.91209 + 0.0173155*2x + 75.49558 + 0\\=&0.00000074x^{3} + 0.0024198x^{2} - 0.00033945x^{2} - 0.395382x - 0.986668x + 0.034631x + 196.40767\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !