There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (0.0042{x}^{2} - 2.3766x + 344.6)(0.0005{x}^{2} - 0.06x - 9.8584)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0000021x^{4} - 0.000252x^{3} - 0.0011883x^{3} - 0.04140528x^{2} + 0.142596x^{2} + 23.42947344x + 0.1723x^{2} - 20.676x - 3397.20464\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0000021x^{4} - 0.000252x^{3} - 0.0011883x^{3} - 0.04140528x^{2} + 0.142596x^{2} + 23.42947344x + 0.1723x^{2} - 20.676x - 3397.20464\right)}{dx}\\=&0.0000021*4x^{3} - 0.000252*3x^{2} - 0.0011883*3x^{2} - 0.04140528*2x + 0.142596*2x + 23.42947344 + 0.1723*2x - 20.676 + 0\\=&0.0000084x^{3} - 0.000756x^{2} - 0.0035649x^{2} - 0.08281056x + 0.285192x + 0.3446x + 2.75347344\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !