There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (0.0099{x}^{2} - 6.0151x + 926.18)(-0.0021{x}^{2} + 1.4222x - 190.78)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -0.00002079x^{4} + 0.01407978x^{3} + 0.01263171x^{3} - 1.888722x^{2} - 8.55467522x^{2} + 1147.560778x - 1.944978x^{2} + 1317.213196x - 176696.6204\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -0.00002079x^{4} + 0.01407978x^{3} + 0.01263171x^{3} - 1.888722x^{2} - 8.55467522x^{2} + 1147.560778x - 1.944978x^{2} + 1317.213196x - 176696.6204\right)}{dx}\\=&-0.00002079*4x^{3} + 0.01407978*3x^{2} + 0.01263171*3x^{2} - 1.888722*2x - 8.55467522*2x + 1147.560778 - 1.944978*2x + 1317.213196 + 0\\=&-0.00008316x^{3} + 0.04223934x^{2} + 0.03789513x^{2} - 3.777444x - 17.10935044x - 3.889956x + 2464.773974\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !