Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (x + 1){(x - 1)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} - 3x^{4} + 2x^{3} + 2x^{2} - 3x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} - 3x^{4} + 2x^{3} + 2x^{2} - 3x + 1\right)}{dx}\\=&5x^{4} - 3*4x^{3} + 2*3x^{2} + 2*2x - 3 + 0\\=&5x^{4} - 12x^{3} + 6x^{2} + 4x - 3\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5x^{4} - 12x^{3} + 6x^{2} + 4x - 3\right)}{dx}\\=&5*4x^{3} - 12*3x^{2} + 6*2x + 4 + 0\\=&20x^{3} - 36x^{2} + 12x + 4\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 20x^{3} - 36x^{2} + 12x + 4\right)}{dx}\\=&20*3x^{2} - 36*2x + 12 + 0\\=&60x^{2} - 72x + 12\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 60x^{2} - 72x + 12\right)}{dx}\\=&60*2x - 72 + 0\\=&120x - 72\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return