Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{(4ML - my + 2mL)}{(2ML + mL - my)})\ with\ respect\ to\ y:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})\right)}{dy}\\=&\frac{(4(\frac{-(0 + 0 - m)}{(2ML + Lm - my)^{2}})ML + 0 - (\frac{-(0 + 0 - m)}{(2ML + Lm - my)^{2}})my - \frac{m}{(2ML + Lm - my)} + 2(\frac{-(0 + 0 - m)}{(2ML + Lm - my)^{2}})Lm + 0)*\frac{1}{2}}{(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}}\\=&\frac{2MLm}{(2ML + Lm - my)^{2}(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}} - \frac{m^{2}y}{2(2ML + Lm - my)^{2}(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}} - \frac{m}{2(2ML + Lm - my)(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}} + \frac{Lm^{2}}{(2ML + Lm - my)^{2}(\frac{4ML}{(2ML + Lm - my)} - \frac{my}{(2ML + Lm - my)} + \frac{2Lm}{(2ML + Lm - my)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return