Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(\frac{1}{2})}^{(\frac{x}{b})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {\frac{1}{2}}^{(\frac{x}{b})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {\frac{1}{2}}^{(\frac{x}{b})}\right)}{dx}\\=&({\frac{1}{2}}^{(\frac{x}{b})}((\frac{1}{b})ln(\frac{1}{2}) + \frac{(\frac{x}{b})(0)}{(\frac{1}{2})}))\\=&\frac{{\frac{1}{2}}^{(\frac{x}{b})}ln(\frac{1}{2})}{b}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{\frac{1}{2}}^{(\frac{x}{b})}ln(\frac{1}{2})}{b}\right)}{dx}\\=&\frac{({\frac{1}{2}}^{(\frac{x}{b})}((\frac{1}{b})ln(\frac{1}{2}) + \frac{(\frac{x}{b})(0)}{(\frac{1}{2})}))ln(\frac{1}{2})}{b} + \frac{{\frac{1}{2}}^{(\frac{x}{b})}*0}{b(\frac{1}{2})}\\=&\frac{{\frac{1}{2}}^{(\frac{x}{b})}ln^{2}(\frac{1}{2})}{b^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return