There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{2}sin(2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}sin(2x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}sin(2x)\right)}{dx}\\=&2xsin(2x) + x^{2}cos(2x)*2\\=&2xsin(2x) + 2x^{2}cos(2x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2xsin(2x) + 2x^{2}cos(2x)\right)}{dx}\\=&2sin(2x) + 2xcos(2x)*2 + 2*2xcos(2x) + 2x^{2}*-sin(2x)*2\\=&2sin(2x) + 8xcos(2x) - 4x^{2}sin(2x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2sin(2x) + 8xcos(2x) - 4x^{2}sin(2x)\right)}{dx}\\=&2cos(2x)*2 + 8cos(2x) + 8x*-sin(2x)*2 - 4*2xsin(2x) - 4x^{2}cos(2x)*2\\=&12cos(2x) - 24xsin(2x) - 8x^{2}cos(2x)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 12cos(2x) - 24xsin(2x) - 8x^{2}cos(2x)\right)}{dx}\\=&12*-sin(2x)*2 - 24sin(2x) - 24xcos(2x)*2 - 8*2xcos(2x) - 8x^{2}*-sin(2x)*2\\=&-48sin(2x) - 64xcos(2x) + 16x^{2}sin(2x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !