There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(8{t}^{3} + 2t + 6)}{({t}^{2} + t)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{8t^{3}}{(t^{2} + t)} + \frac{2t}{(t^{2} + t)} + \frac{6}{(t^{2} + t)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{8t^{3}}{(t^{2} + t)} + \frac{2t}{(t^{2} + t)} + \frac{6}{(t^{2} + t)}\right)}{dx}\\=&8(\frac{-(0 + 0)}{(t^{2} + t)^{2}})t^{3} + 0 + 2(\frac{-(0 + 0)}{(t^{2} + t)^{2}})t + 0 + 6(\frac{-(0 + 0)}{(t^{2} + t)^{2}})\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !