There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt({(5 + x)}^{2} + {(2 - \frac{x}{2})}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{5}{4}x^{2} + 8x + 29)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{5}{4}x^{2} + 8x + 29)\right)}{dx}\\=&\frac{(\frac{5}{4}*2x + 8 + 0)*\frac{1}{2}}{(\frac{5}{4}x^{2} + 8x + 29)^{\frac{1}{2}}}\\=&\frac{5x}{4(\frac{5}{4}x^{2} + 8x + 29)^{\frac{1}{2}}} + \frac{4}{(\frac{5}{4}x^{2} + 8x + 29)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !