There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{a}xsin(2)x - 2ax\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e}^{a}sin(2) - 2ax\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{e}^{a}sin(2) - 2ax\right)}{dx}\\=&2x{e}^{a}sin(2) + x^{2}({e}^{a}((0)ln(e) + \frac{(a)(0)}{(e)}))sin(2) + x^{2}{e}^{a}cos(2)*0 - 2a\\=&2x{e}^{a}sin(2) - 2a\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !