There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({(2x - 1)}^{2} + 4)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (4x^{2} - 4x + 5)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (4x^{2} - 4x + 5)^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(4*2x - 4 + 0)}{(4x^{2} - 4x + 5)^{\frac{1}{2}}})\\=&\frac{4x}{(4x^{2} - 4x + 5)^{\frac{1}{2}}} - \frac{2}{(4x^{2} - 4x + 5)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !