Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of T is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{hw}{({e}^{(\frac{hwT}{k})} - 1)}\ with\ respect\ to\ T:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{hw}{({e}^{(\frac{hwT}{k})} - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{hw}{({e}^{(\frac{hwT}{k})} - 1)}\right)}{dT}\\=&(\frac{-(({e}^{(\frac{hwT}{k})}((\frac{hw}{k})ln(e) + \frac{(\frac{hwT}{k})(0)}{(e)})) + 0)}{({e}^{(\frac{hwT}{k})} - 1)^{2}})hw + 0\\=&\frac{-h^{2}w^{2}{e}^{(\frac{hwT}{k})}}{({e}^{(\frac{hwT}{k})} - 1)^{2}k}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return