There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin(2sqrt(x(1 - x))) - arccos(2x - 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(2sqrt(-x^{2} + x)) - arccos(2x - 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(2sqrt(-x^{2} + x)) - arccos(2x - 1)\right)}{dx}\\=&(\frac{(\frac{2(-2x + 1)*\frac{1}{2}}{(-x^{2} + x)^{\frac{1}{2}}})}{((1 - (2sqrt(-x^{2} + x))^{2})^{\frac{1}{2}})}) - (\frac{-(2 + 0)}{((1 - (2x - 1)^{2})^{\frac{1}{2}})})\\=&\frac{-2x}{(-4sqrt(-x^{2} + x)^{2} + 1)^{\frac{1}{2}}(-x^{2} + x)^{\frac{1}{2}}} + \frac{1}{(-4sqrt(-x^{2} + x)^{2} + 1)^{\frac{1}{2}}(-x^{2} + x)^{\frac{1}{2}}} + \frac{2}{(-4x^{2} + 4x)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !