Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{2}(2ln(x) + 2ln(x)ln(x) - 1)}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}x^{2}ln^{2}(x) + \frac{1}{2}x^{2}ln(x) - \frac{1}{4}x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}x^{2}ln^{2}(x) + \frac{1}{2}x^{2}ln(x) - \frac{1}{4}x^{2}\right)}{dx}\\=&\frac{1}{2}*2xln^{2}(x) + \frac{\frac{1}{2}x^{2}*2ln(x)}{(x)} + \frac{1}{2}*2xln(x) + \frac{\frac{1}{2}x^{2}}{(x)} - \frac{1}{4}*2x\\=&xln^{2}(x) + 2xln(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return