Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{-{x}^{(\frac{-3}{2})}ln(x)}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{-1}{4}ln(x)}{x^{\frac{3}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{-1}{4}ln(x)}{x^{\frac{3}{2}}}\right)}{dx}\\=&\frac{\frac{-1}{4}*\frac{-3}{2}ln(x)}{x^{\frac{5}{2}}} - \frac{\frac{1}{4}}{x^{\frac{3}{2}}(x)}\\=&\frac{3ln(x)}{8x^{\frac{5}{2}}} - \frac{1}{4x^{\frac{5}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{3ln(x)}{8x^{\frac{5}{2}}} - \frac{1}{4x^{\frac{5}{2}}}\right)}{dx}\\=&\frac{3*\frac{-5}{2}ln(x)}{8x^{\frac{7}{2}}} + \frac{3}{8x^{\frac{5}{2}}(x)} - \frac{\frac{-5}{2}}{4x^{\frac{7}{2}}}\\=&\frac{-15ln(x)}{16x^{\frac{7}{2}}} + \frac{1}{x^{\frac{7}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return