There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{5} - (n + 6){x}^{4} + (8n + 4){x}^{3} - (20n - 22){x}^{2} + (17n - 26)x - 3n\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} - nx^{4} - 6x^{4} + 8nx^{3} + 4x^{3} - 20nx^{2} + 22x^{2} + 17nx - 26x - 3n\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} - nx^{4} - 6x^{4} + 8nx^{3} + 4x^{3} - 20nx^{2} + 22x^{2} + 17nx - 26x - 3n\right)}{dx}\\=&5x^{4} - n*4x^{3} - 6*4x^{3} + 8n*3x^{2} + 4*3x^{2} - 20n*2x + 22*2x + 17n - 26 + 0\\=&5x^{4} - 4nx^{3} - 24x^{3} + 24nx^{2} + 12x^{2} - 40nx + 44x + 17n - 26\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !