There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(1 - ln(kx))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - xln(kx) + x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - xln(kx) + x\right)}{dx}\\=& - ln(kx) - \frac{xk}{(kx)} + 1\\=& - ln(kx)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !