Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{e}^{ln(x)}}^{(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{e}^{ln(x)}}^{(2x)}\right)}{dx}\\=&({{e}^{ln(x)}}^{(2x)}((2)ln({e}^{ln(x)}) + \frac{(2x)(({e}^{ln(x)}((\frac{1}{(x)})ln(e) + \frac{(ln(x))(0)}{(e)})))}{({e}^{ln(x)})}))\\=&2{{e}^{ln(x)}}^{(2x)}ln({e}^{ln(x)}) + 2{{e}^{ln(x)}}^{(2x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return