There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(x)x - 10{e^{x}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xsin(x) - 10e^{{x}*{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xsin(x) - 10e^{{x}*{3}}\right)}{dx}\\=&sin(x) + xcos(x) - 10*3e^{{x}*{2}}e^{x}\\=&sin(x) + xcos(x) - 30e^{{x}*{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !