There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 3{x}^{4} - 2{x}^{3} + {x}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3x^{4} - 2x^{3} + x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3x^{4} - 2x^{3} + x^{2}\right)}{dx}\\=&3*4x^{3} - 2*3x^{2} + 2x\\=&12x^{3} - 6x^{2} + 2x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12x^{3} - 6x^{2} + 2x\right)}{dx}\\=&12*3x^{2} - 6*2x + 2\\=&36x^{2} - 12x + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !