There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 3{x}^{2}sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3x^{2}sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3x^{2}sin(x)\right)}{dx}\\=&3*2xsin(x) + 3x^{2}cos(x)\\=&6xsin(x) + 3x^{2}cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6xsin(x) + 3x^{2}cos(x)\right)}{dx}\\=&6sin(x) + 6xcos(x) + 3*2xcos(x) + 3x^{2}*-sin(x)\\=&6sin(x) + 12xcos(x) - 3x^{2}sin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !