There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(\frac{x}{(2 - x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x}{(-x + 2)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x}{(-x + 2)})\right)}{dx}\\=&\frac{((\frac{-(-1 + 0)}{(-x + 2)^{2}})x + \frac{1}{(-x + 2)})}{(\frac{x}{(-x + 2)})}\\=&\frac{1}{(-x + 2)} + \frac{1}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(-x + 2)} + \frac{1}{x}\right)}{dx}\\=&(\frac{-(-1 + 0)}{(-x + 2)^{2}}) + \frac{-1}{x^{2}}\\=&\frac{1}{(-x + 2)^{2}} - \frac{1}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !