Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({x}^{2} + 3y)(2x - 5)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{3} - 5x^{2} + 6yx - 15y\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{3} - 5x^{2} + 6yx - 15y\right)}{dx}\\=&2*3x^{2} - 5*2x + 6y + 0\\=&6x^{2} - 10x + 6y\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 6x^{2} - 10x + 6y\right)}{dx}\\=&6*2x - 10 + 0\\=&12x - 10\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return