There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (3{x}^{2} + 2x - 5)(2x + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6x^{3} + 7x^{2} - 8x - 5\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6x^{3} + 7x^{2} - 8x - 5\right)}{dx}\\=&6*3x^{2} + 7*2x - 8 + 0\\=&18x^{2} + 14x - 8\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 18x^{2} + 14x - 8\right)}{dx}\\=&18*2x + 14 + 0\\=&36x + 14\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !